CMADS Verification
Total Nitrogen Accumulation using CMADS and SWAT

Human activities, especially dam construction, have changed the nutrient cycle process at the basin scale. Reservoirs often act as a sink in the basin and more nutrients are retained due to sedimentation, which induces the eutrophication of the surface water system. This paper proposes an integrated methodology to analyze the total nitrogen (TN) accumulation in a drinking water reservoir, based on the soil and water assessment tool (SWAT) model driven by the China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS). The results show that the CMADS could be applied to drive the SWAT model in Northeast China. The dynamic process of TN accumulation indicates that the distribution of TN inputted into the reservoir fluctuated with the dry and wet seasons from 2009–2016, which was mainly governed by the amount of runoff. The annual average TN input and output fluxes of the Biliuhe reservoir were 274.41 × 104 kg and 217.14 × 104 kg, which meant that 19.76% of the TN input accumulated in the reservoir. Higher TN accumulation in the reservoir did not correspond to a higher TN load, due to the influence of flood discharge and the water supply. Interestingly, a higher TN accumulation efficiency was observed in normal hydrological years, because the water source reservoir always stores most of the water input for future multiple uses but rarely discharges surplus water. The non-point sources from fertilizer and atmospheric deposition and soils constituted the highest proportion of the TN input, accounting for 35.15%, 30.15%, and 27.72% of the average input. The DBWD (Dahuofang reservoir to Biliuhe reservoir water diversion) project diverted 32.03 × 104 kg year−1 TN to the Biliuhe reservoir in 2015–2016, accounting for 14.05% of the total annual input. The discharge output and the BDWD (Biliuhe reservoir to Dalian city water diversion) project output accounted for 48.75% and 47.74%, respectively. The effects of interbasin water diversion projects should be of great concern in drinking water source water system management. There was a rising trend of TN level in the Biliuhe reservoir, which increases the eutrophication risk of the aquatic ecosystem. The TN accumulated in the sediment contributed to a large proportion of the TN accumulated in the reservoir. In addition to decreasing the nonpoint source nitrogen input from the upper basin, discharging anoxic waters and sediment with a high nitrogen concentration through the bottom hole of the dam could alleviate the nitrogen pollution in the Biliuhe reservoir. View Full-Text


Figure Land use types (a) and soil types (b) of the Biliuhe reservoir basin. Land use classes correspond to FRST (frost), PAST (pasture), WATR (water), URLD (low-density residential), and AGRL (agricultural land). Soil classes correspond to ZR (brown earth), CZR (young brown earth), ZRXT (meadow brown earth), and CDT (meadow soil).

Ref : Qin, G.; Liu, J.; Wang, T.; Xu, S.; Su, G. An Integrated Methodology to Analyze the Total Nitrogen Accumulation in a Drinking Water Reservoir Based on the SWAT Model Driven by CMADS: A Case Study of the Biliuhe Reservoir in Northeast China. Water 2018, 10, 1535.